Chap 5 Phasor Method

5.1 Fundamental concept of phasor method

• Consider an 3rd-order RLC circuir excited by $v(t) = V cos(\omega t)$

(5.1-1)
$$y'''(t) + a_2 y''(t) + a_1 y'(t) + a_0 y(t) = b_2 v''(t) + b_1 v'(t) + b_0(t)$$

where y(t) is the voltage or current of a component to be measured.

- The characteristic equation is $\lambda^3 + a_2 \lambda^2 + a_1 \lambda + a_0 = 0$ with roots $Re(\lambda_i) < 0$, i=1,2,3, which implies the circuit is stable.
- Taking Laplace transform yields

(5.1-2)
$$\hat{y}(s) = \underbrace{\frac{p_2 s^2 + p_1 s + p_0}{s^3 + a_2 s^2 + a_1 s + a_0}}_{\hat{p}(s)} + \underbrace{\frac{b_2 s^2 + b_1 s + b_0}{s^3 + a_2 s^2 + a_1 s + a_0}}_{\hat{h}(s)} \hat{v}(s)$$

where $\hat{v}(s) = \frac{Vs}{s^2 + \omega^2}$, $\hat{p}(s)$ is related to the initial conditions and $\hat{h}(s)$ is the transfer function of the circuit.

• Hence,

(5.1-3)
$$y(t) = p(t) + h(t) * v(t) \Rightarrow y(t) = h(t) * v(t), \text{ as } t \to \infty$$

where $p(\infty) = 0$ because $Re(\lambda_i) < 0, i=1,2,3$.

• That means $y(t)|_{t\to\infty}$ can be solved by

(5.1-4)
$$\hat{y}(s) = \hat{h}(s) \frac{Vs}{s^2 + \omega^2} = \frac{b_2 s^2 + b_1 s + b_0}{s^3 + a_2 s^2 + a_1 s + a_0} \cdot \frac{Vs}{s^2 + \omega^2}$$
$$= \frac{q_2 s^2 + q_1 s + q_0}{s^3 + a_2 s^2 + a_1 s + a_0} + \frac{As + B\omega}{s^2 + \omega^2} = \hat{q}(s) + \frac{As + B\omega}{s^2 + \omega^2}$$

which leads to $y(t) = q(t) + A\cos \omega t + B\sin \omega t$. Similarly, $Re(\lambda_i) < 0$, i=1,2,3, results in $q(\infty) = 0$ and

(5.1-5)
$$y(t) = A\cos\omega t + B\sin\omega t = Y\cos(\omega t + \theta), \text{ as } t \to \infty$$

where $Y = \sqrt{A^2 + B^2}$ and $\theta = -tan^{-1}(B/A)$.

• From (5.1-4), it can be obtained that

(5.1-6)
$$\hat{q}(s)(s^2 + \omega^2) + (As + B\omega) = Vs \cdot \hat{h}(s)$$

Let $s = j\omega$, then $s^2 + \omega^2 = 0$ and $(As + B\omega) = Vs \cdot \hat{h}(s)$, i.e.,
(5.1-7) $(jA\omega + B\omega) = jV\omega \cdot \hat{h}(j\omega)$
 $\Rightarrow (A - jB) = V \cdot \hat{h}(j\omega) \Rightarrow Ye^{j\theta} = V |\hat{h}(j\omega)| e^{j\angle \hat{h}(j\omega)}$
where $\hat{h}(j\omega) = |\hat{h}(j\omega)| e^{j\angle \hat{h}(j\omega)}$, $Y = V |\hat{h}(j\omega)|$ and $\theta = \angle \hat{h}(j\omega)$, then
(5.1-8) $y(t) = V |\hat{h}(j\omega)| \cos(\omega t + \angle \hat{h}(j\omega))$

• To sum up, if the input of an RLC circuit is $v(t) = V \cos(\omega t)$, then the output is $y(t) = V |\hat{h}(j\omega)| \cos(\omega t + \angle \hat{h}(j\omega))$ which can be solved by using the Laplace transform and setting $s = j\omega$.

5.2 Phasor of sinusoidal signals

• A signal v(t) with a single frequency ω is expressed as (5.2-1) $v(t) = V \cos(\omega t + \theta)$

where V is the magnitude and θ is the phase of the signal.

• Using the Euler formula $e^{j\theta} = \cos \theta + j \sin \theta$ can obtain

(5.2-2)
$$v(t) = V \cos(\omega t + \theta) = Re(Ve^{j(\omega t + \theta)}) = Re(Ve^{j\theta}e^{j\omega t}) = Re(Ve^{j\omega t})$$

where

(5.2-3)
$$V = Ve^{j\theta} = V \angle \theta = V \cos \theta + jV \sin \theta$$

and $V = Ve^{j\theta}$ is called the phasor of $v(t) = V \cos(\omega t + \theta)$.

<u>Example</u>: If $v(t) = 2 \sin(4t - 30^\circ)$, determine its phasor.

Example: Determine the sinusoidal signal v(t) with frequency $\omega = 3$ and phasor $V = 5 \angle 60^{\circ}$.

•

5.3 Components in Phasor Method

Voltage source $v_s(t) = V_s \cos(\omega t + \theta_s)$ Since $v_s(t) = V_s \cos(\omega t + \theta_s) = Re(V_s e^{j\theta_s} e^{j\omega t})$, the voltage source in phasor method is

$$(5.3-1) V_s = V_s e^{j\theta_s} = V_s \angle \theta_s$$

• Current source $i_s(t) = I_s \cos(\omega t + \theta_s)$

Since $i_s(t) = I_s \cos(\omega t + \theta_s) = Re(I_s e^{j\theta_s} e^{j\omega t})$, the current source in phasor method is

$$(5.3-2) \qquad I_s = I_s e^{j\theta} = I_s \angle \theta$$

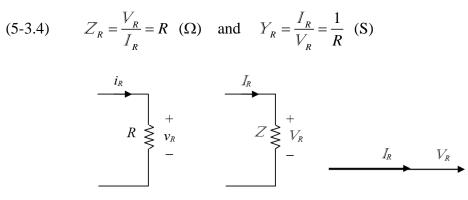
Resistor with component equation $v_R(t) = R \cdot i_R(t)$

If
$$v_R(t) = V_R \cos \omega t = Re\left(V_R e^{j0^\circ} e^{j\omega t}\right)$$
, then $i_R(t) = I_R \cos \omega t = Re\left(I_R e^{j0^\circ} e^{j\omega t}\right)$

where $I_R = \frac{V_R}{R}$. Their phasors are

(5.3-3)
$$V_R = V_R e^{j0^\circ} = V_R \angle 0^\circ$$
 and $I_R = \frac{V_R}{R} e^{j0^\circ} = I_R \angle 0^\circ$

The impedance and admittance (or complex resistance and conductance) of a resistor are respectively defined as



• Capacitor with component equation $i_C(t) = C \frac{dv_C(t)}{dt}$

If
$$v_C(t) = V_C \cos \omega t = Re(V_C e^{j0^\circ} e^{j\omega t})$$
, then
 $i_C(t) = -\omega CV_C \sin \omega t = \omega CV_C \cos(\omega t + 90^\circ)$
 $= I_C \cos(\omega t + 90^\circ) = Re(I_C e^{j90^\circ} e^{j\omega t})$

Their phasors are

(5-3.5)
$$V_C = V_C e^{j0^\circ} = V_C \angle 0^\circ$$
 and $I_C = \omega C V_C e^{j90^\circ} = I_C \angle 90^\circ$.

The impedance and admittance of a capacitor are respectively defined as

(5-3.6)
$$Z_{c} = \frac{V_{c}}{I_{c}} = \frac{V_{c}}{\omega C V_{c} \angle 90^{\circ}} = \frac{1}{\omega C} \angle (-90^{\circ}) = \frac{1}{j\omega C} \quad (\Omega)$$

(5-3.7)
$$Y_c = \frac{I_c}{V_c} = \omega C \angle 90^\circ = j\omega C \quad (S)$$

Compared to the voltage, the current phasor is leading 90° in phase.

Inductor with component equation $v_L(t) = L \frac{di_L(t)}{dt}$

If
$$i_L(t) = I_L \cos \omega t = Re(I_L e^{j0^\circ} e^{j\omega t})$$
, then
 $v_L(t) = -\omega L I_L \sin \omega t = \omega L I_L \cos(\omega t + 90^\circ)$
 $= V_L \cos(\omega t + 90^\circ) = Re(V_L e^{j90^\circ} e^{j\omega t})$.

Their phasors are

•

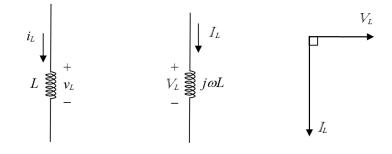
(5.3-8)
$$I_L = I_L e^{j0^\circ} = I_L \angle 0^\circ$$
 and $V_L = \omega L I_L e^{j90^\circ} = V_L \angle 90^\circ$.

The impedance and admittance of an inductor are respectively as

(5-3.9)
$$Z_{L} = \frac{V_{L}}{I_{L}} = \frac{\omega L I_{L} \angle 90^{\circ}}{I_{L}} = \omega L \angle 90^{\circ} = j\omega L \quad (\Omega)$$

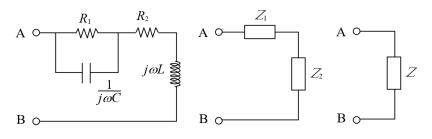
(5-3.10)
$$Y_L = \frac{I_L}{V_L} = \frac{I_L}{\omega L I_L \angle 90^\circ} = \frac{1}{\omega L} \angle (-90^\circ) = \frac{1}{j\omega L}$$
 (S)

Compared to the current, the voltage phasor is leading 90° in phase.



5.4 Circuit Analysis

• Equivalent impedance



The impedances are $Z_{R1} = R_1$, $Z_{R2} = R_2$, $Z_C = \frac{1}{j\omega C}$ and $Z_L = j\omega L$.

Since R_1 and C are in parallel and R_2 and L are in series, we have

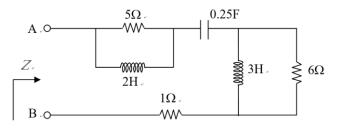
(5.4-1)
$$Z_1 = \left(\frac{1}{Z_{R1}} + \frac{1}{Z_C}\right)^{-1} = \left(\frac{1}{R_1} + j\omega C\right)^{-1} = \frac{R_1}{1 + j\omega R_1 C}$$

$$(5.4-2) Z_2 = Z_{R1} + Z_L = R_2 + j\omega L$$

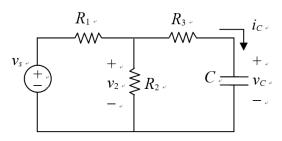
Both Z_1 and Z_2 are in series and result in the equivalent impedance

(5.4-3)
$$Z = Z_1 + Z_2 = \frac{R_1}{1 + j\omega R_1 C} + R_2 + j\omega L$$

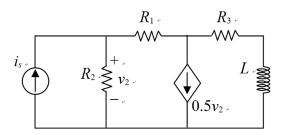
• Example: Z = ?



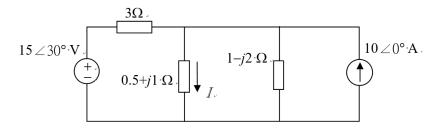
• Example: $v_2(t) = ?$



• Example:
$$v_2(t) = ?$$



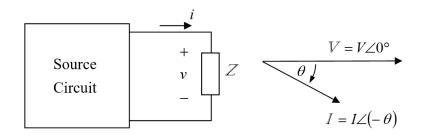
• Example:
$$i(t) = ?$$



5.5 Complex power

• Consider a payload with impedance Z connected to a source circuit,

where $v(t) = V \cos \omega t$ and $i(t) = I \cos (\omega t - \theta)$.



The phasors of $v(t) = V \cos \omega t$ and $i(t) = I \cos(\omega t - \theta)$ are $V = V \angle 0^\circ$ and $I = I \angle (-\theta)$. The phase of the current is lagging the voltage by θ .

• The instantaneous power at *t* absorbed by the payload is

(5.5-1)
$$p(t) = v(t)i(t) = VI \cos \omega t \cos (\omega t - \theta)$$
$$= \frac{1}{2}VI \cos \theta + \frac{1}{2}VI \cos (2\omega t - \theta)$$
$$= \frac{1}{2}VI \cos \theta (1 + \cos 2\omega t) + \frac{1}{2}VI \sin \theta \sin 2\omega t$$
$$= 2P \cos^{2} \omega t + Q \sin 2\omega t$$

• The average of power in one period *T* is

(5.5-2)
$$P_{av} = \frac{1}{T} \int_{T} p(t) dt = \frac{2P}{T} \underbrace{\int_{T} \cos^{2} \omega t \, dt}_{=T/2} + \frac{Q}{T} \underbrace{\int_{T} \sin 2\omega t \, dt}_{=0}$$
$$= \frac{2P}{T} \cdot \frac{T}{2} = P = \frac{1}{2} VI \cos \theta$$

Since only P is absorbed in one period, we call P the real power. On the other hand, Q is reserved in the circuit and called the reactive power.

• The root-mean-square(rms) values or effective values of $v(t) = V \cos \omega t$ and $i(t) = I \cos(\omega t - \theta)$ are calculated as

(5.5-3)
$$\tilde{V} = \sqrt{\frac{1}{T} \int_{T} v^2(t) dt} = \sqrt{\frac{V^2}{T} \int_{T} \cos^2 \omega t \, dt} = \sqrt{\frac{V^2}{T} \cdot \frac{T}{2}} = \frac{V}{\sqrt{2}}$$

(5.5-4)
$$\tilde{I} = \sqrt{\frac{1}{T} \int_{T} i^{2}(t) dt} = \sqrt{\frac{I^{2}}{T} \int_{T} \cos^{2}\left(\omega t - \theta\right) dt} = \sqrt{\frac{I^{2}}{T} \cdot \frac{T}{2}} = \frac{I}{\sqrt{2}}$$

• The phasors of $v(t) = V \cos \omega t$ and $i(t) = I \cos(\omega t - \theta)$ are defined as

(5.5-5)
$$\tilde{V} = \frac{V}{\sqrt{2}} = \frac{V}{\sqrt{2}} \angle 0^\circ = \tilde{V} \angle 0^\circ$$

(5.5-6)
$$\tilde{I} = \frac{I}{\sqrt{2}} = \frac{I}{\sqrt{2}} \angle \left(-\theta\right) = \tilde{I} \angle \left(-\theta\right)$$

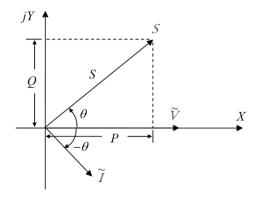
• The complex power is defined as

(5.5-7)
$$S = \tilde{V}\tilde{I}^* = \tilde{V}\tilde{I} \angle \theta = \frac{V}{\sqrt{2}} \frac{I}{\sqrt{2}} e^{j\theta}$$
$$= \frac{1}{2} VI \cos \theta + j \frac{1}{2} VI \sin \theta = P + jQ = S \angle \theta \quad \text{(VA: volt-ampere)}$$

where $S = |S| = \tilde{V} \tilde{I} = \frac{1}{2} V I$ (VA) is called the apparent power. Hence,

(5.5-8)
$$P = \frac{1}{2} VI \cos \theta = Re\left(\tilde{V} \ \tilde{I}^*\right) = Re\left(S\right) = S \cos \theta \quad (W)$$

(5.5-9)
$$Q = \frac{1}{2} VI \sin \theta = Im \left(\tilde{V} \ \tilde{I}^* \right) = Im \left(S \right) = S \sin \theta \quad \text{(VAR)}$$



• Let Z = R + jX where *R* is the resistance and *X* is the reactance. Since $\tilde{V} = \tilde{I}Z$, we have

(5.5-10)
$$Z = \frac{\widetilde{V}}{\widetilde{I}} = \frac{\widetilde{V}}{\widetilde{I}} \angle \theta = \frac{V}{I} \angle \theta = Z \angle \theta$$

Therefore, the complex power can be described as

(5.5-11)
$$S = \tilde{V}\tilde{I}^* = \tilde{I}\tilde{I}^*Z = \begin{cases} \tilde{I}^2 Z \angle \theta = S \angle \theta \\ \tilde{I}^2 (R+jX) = \tilde{I}^2 R+j \tilde{I}^2 X = P+jQ \end{cases}$$

where

(5.5-12)
$$S = \tilde{I}^2 Z = \frac{1}{2} I^2 Z$$
 (VA)

(5.5-13)
$$P = \tilde{I}^2 R = \frac{1}{2} I^2 R$$
 (W)

(5.5-14)
$$Q = \tilde{I}^2 X = \frac{1}{2}I^2 X$$
 (VAR)

5.6 Conservation of energy

• The conservation of energy implies the total power in a circuit is zero, i.e.,

(5.6-1)
$$p(t) = \sum_{k=1}^{n} p_k(t) = \sum_{k=1}^{n} v_k(t) i_k(t) = 0$$

Since the power of the k^{th} component is

(5.6-2)
$$p_k(t) = 2P_k \cos^2 \omega t + Q_k \sin 2\omega t, \quad k=1,2,\cdots,n$$

it can be obtained that

(5.6-3)
$$\sum_{k=1}^{n} p_{k}(t) = \sum_{k=1}^{n} \left(2P_{k} \cos^{2} \omega t + Q_{k} \sin 2\omega t \right)$$
$$= 2 \left(\sum_{k=1}^{n} P_{k} \right) \cos^{2} \omega t + \left(\sum_{k=1}^{n} Q_{k} \right) \sin 2\omega t = 0$$

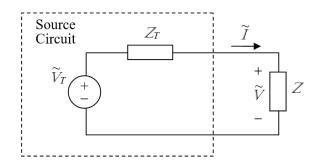
which leads to $\sum_{k=1}^{n} P_k = 0$ and $\sum_{k=1}^{n} Q_k = 0$.

Thus, the total complex power satisfies

(5.6-4)
$$S = \sum_{k=1}^{n} S_{k} = \sum_{k=1}^{n} P_{k} + j \sum_{k=1}^{n} Q_{k} = 0$$

In other words, the conservation of energy also implies the total complex power is equal to zero.

5.7 The maximum power transfer theorem



Assume $\tilde{V}_T = \tilde{V}_T \angle 0^\circ$, $Z_T = R_T + jX_T$ and Z = R + jX, then

(5.7-1)
$$\tilde{V} = \frac{Z}{Z_T + Z} \tilde{V_T} \text{ and } \tilde{I} = \frac{\tilde{V_T}}{Z_T + Z}$$

The complex power of payload is

(5.7-2)
$$\tilde{VI}^* = \frac{Z}{(Z_T + Z)(Z_T^* + Z^*)} \tilde{V}_T \tilde{V}_T^*$$
$$= \frac{R + jX}{(R_T + R)^2 + (X_T + X)^2} \tilde{V}_T^2 = P + jQ$$

•

• The real power transferred to the payload is

(5.7-3)
$$P = Re\left(\tilde{V}\tilde{I}^*\right) = \frac{R\tilde{V}_T^2}{\left(R_T + R\right)^2 + \left(X_T + X\right)^2}$$

• The maximum real power can be obtained when $\frac{\partial P}{\partial R} = 0$ and $\frac{\partial P}{\partial X} = 0$, i.e.,

(5.7-4)
$$\frac{\partial P}{\partial X} = \frac{-2R(X_T + X)}{\left(\left(R_T + R\right)^2 + \left(X_T + X\right)^2\right)^2}\tilde{V}_T^2 = 0 \Longrightarrow X = -X_T$$

(5.7-5)
$$\frac{\partial P}{\partial R} = \frac{R_T^2 - R^2 + (X_T + X)^2}{\left(\left(R_T + R\right)^2 + \left(X_T + X\right)^2\right)^2} \tilde{V}_T^2 = 0 \Longrightarrow R = R_T$$

which results in $Z = R_T - jX_T = Z_T^*$, called the matching impeadance.

When $Z = Z_T^*$, the source circuit generates the real power

(5.7-6)
$$P_T = Re\left(\tilde{V}_T \tilde{I}^*\right) = Re\left(\tilde{V}_T \left(\frac{\tilde{V}_T}{Z_T + Z}\right)^*\right) = \frac{\tilde{V}_T^2}{2R_T}$$

and the payload absorbs the maximum real power

(5.7-7)
$$P_{max} = Re\left(\tilde{VI}^*\right) = \frac{\tilde{V}_T^2}{4R_T} = \frac{1}{2}P_T$$

That means the maximum real power can be transferred to the payload is only half of the real power generated by the source circuit.

• Consider a special case that the payload is a real resistance, i.e., Z = R. Then, the real power transferred to the payload is

(5.7-8)
$$P = Re\left(\tilde{V}\tilde{I}^*\right) = \frac{R}{\left(R_T + R\right)^2 + X_T^2}\tilde{V}_T^2$$

The maximum real power can be obtained when $\frac{\partial P}{\partial R} = 0$, i.e.,

(5.7-9)
$$\frac{\partial P}{\partial R} = \frac{R_T^2 + X_T^2 - R^2}{\left(\left(R_T + R\right)^2 + X_T^2\right)^2} \tilde{V}_T^2 = 0 \Longrightarrow R = \sqrt{R_T^2 + X_T^2}$$

When $R = \sqrt{R_T^2 + X_T^2}$, the source circuit generates the real power

(5.7-10)
$$P_{T} = Re\left(\tilde{V}_{T}\tilde{I}^{*}\right) = Re\left(\tilde{V}_{T}\left(\frac{\tilde{V}_{T}}{Z_{T}+R}\right)^{*}\right) = Re\left(\frac{\tilde{V}_{T}^{2}}{R+R_{T}-jX_{T}}\right)$$
$$= \frac{\tilde{V}_{T}^{2}\left(R+R_{T}\right)}{\left(R+R_{T}\right)^{2}+X_{T}^{2}} = \frac{\tilde{V}_{T}^{2}\left(R+R_{T}\right)}{R^{2}+2RR_{T}+R_{T}^{2}+X_{T}^{2}} = \frac{\tilde{V}_{T}^{2}\left(R+R_{T}\right)}{2R^{2}+2RR_{T}} = \frac{\tilde{V}_{T}^{2}}{2R}$$

and the payload absorbs the maximum real power

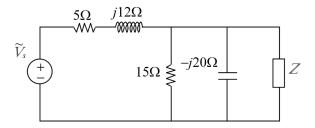
(5.7-11)
$$P_{max} = Re\left(\tilde{V}\tilde{I}^*\right) = Re\left(\frac{\tilde{V}\tilde{V}^*}{R}\right) = \frac{\tilde{V}\tilde{V}^*}{R}$$
$$= \frac{R\tilde{V}_T\tilde{V}_T^*}{(Z_T + R)(Z_T^* + R)} = \frac{\tilde{V}_T^2}{2(R + R_T)} = \frac{R}{R + R_T}P_T$$

Hence, the maximum real power can be transferred to the payload is $\frac{R}{R+R_T}$ times of the real power generated by the source circuit.

• Example:

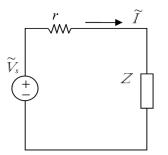
Assume the voltage source is $\tilde{V}_s = 110 \angle 0^\circ$ V.

- (A) Determine the maximum real power P_{max} transferred to Z = R + jX.
- (B) Determine the maximum real power P_{max} transferred to Z = R.



5.8 Power factor correction

• The electric power transmitted from $\tilde{V_s}$ to the inductive payload Z = R + jXwith X > 0, and assume *r* is a small resistance of the transmission line.



• If $\tilde{V}_s = \tilde{V}_s \angle 0^\circ$, then the current is

(5.8-1)
$$\tilde{I} = \frac{\tilde{V_s}}{r+Z} = \frac{\tilde{V_s}}{r+R+jX}$$

and the complex power transferred to the payload is

(5.8-2)
$$S_{Z} = Z\tilde{I}\tilde{I}^{*} = \frac{(R+jX)\tilde{V}_{s}\tilde{V}_{s}^{*}}{(r+R)^{2}+X^{2}} = \frac{(R+jX)\tilde{V}_{s}^{2}}{(r+R)^{2}+X^{2}}$$
$$= \frac{R\tilde{V}_{s}^{2}}{\underbrace{(r+R)^{2}+X^{2}}_{P}} + j\underbrace{X\tilde{V}_{s}^{2}}_{\underbrace{(r+R)^{2}+X^{2}}_{Q}}$$
$$= S_{z}\angle\theta = S_{z}\cos\theta + jS_{z}\sin\theta$$

• Define the power factor of Z as

(5.8-3)
$$pf = \cos \theta = \frac{P}{S_Z} = \frac{R}{\sqrt{R^2 + X^2}}$$

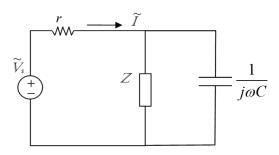
In other words, the power factor is the ratio of real power to the apparent power. That implies the power factor will be incressed if the reactance *X* is reduced.

• The power dissipated by the resistance *r* is

(5.8-4)
$$P_{r} = r \tilde{I} \tilde{I}^{*} = \frac{r \tilde{V}_{s} \tilde{V}_{s}^{*}}{\left(r+R\right)^{2} + X^{2}} = \frac{r \tilde{V}_{s}^{2}}{\left(r+R\right)^{2} + X^{2}}$$

which implies P_r will be decreased if the reactance X is reduced.

• Power factor correction of inductive payload can be achieved by connecting a capacitor parallel to the payload, depicted as below:



Since $Y = Z^{-1} = \frac{1}{R + jX} = \frac{R}{R^2 + X^2} - j\frac{X}{R^2 + X^2}$, the new payload is

(5.8-5)
$$Y_{new} = Y // j\omega C = \frac{R}{R^2 + X^2} - j\frac{X}{R^2 + X^2} + j\omega C$$

If
$$C = \frac{X}{\omega(R^2 + X^2)}$$
, then $Y_{new} = \frac{R}{R^2 + X^2}$, i.e.,

$$(5.8-6) \qquad Z_{new} = R + \frac{X^2}{R}$$

Hence, the power dissipated by the resistance r is obtained as

(5.8-7)
$$P_{r} = r \tilde{I} \tilde{I}^{*} = \frac{r \tilde{V}_{s} \tilde{V}_{s}^{*}}{\left(r + R + \frac{X^{2}}{R}\right)^{2}} = \frac{r \tilde{V}_{s}^{2}}{\left(r + R + \frac{X^{2}}{R}\right)^{2}}$$
$$= \frac{r \tilde{V}_{s}^{2}}{\left(r + R\right)^{2} + 2\left(1 + \frac{r}{R}\right)X^{2} + \frac{X^{4}}{R^{2}}} < \frac{r \tilde{V}_{s}^{2}}{\left(r + R\right)^{2} + X^{2}}$$

It is clear that the power P_r is indeed reduced after power factor correction.